

Fundamentals of Robotics; Spiral 2

December 15, 2017

2 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

1 Execution

When we set out on this adventure, we decided to create an approximately 1.5’ long squid

able to make a triangle in the pool by tracking LED buoys. It was to have 3 steering systems and

long tentacles to add to the aesthetic. The squid was to be bio-inspired, the very reason we chose

3 steering systems. Because squids use jet propulsion with turning tubes to change direction, we

wanted to have controllable tubes that could not only be pulled one direction or the other to turn

but could also have a valve turned on or off so as to make turning easier by turning off one flow

of water. We also had fins on the front of the boat to turn, which were inspired off of fins that

squids also use to assist their turning. I will go more in depth on the different steering (tubes, fins,

and valves) systems later in the report. Our goal in this project was to create a steering system that

was unique and challenging for us.

We ended up not succeeding to make all of the steering systems work. In fact, we only had

about 1.5 steering systems working on demo day. On top of that, our boats propulsion was not

strong enough to move the boat and because of the speed, the steering units that could move,

couldn’t turn our boat. We ended up coming in last in the race with 19 points. For the most part,

our boat tried to go in a straight line but ended up veering off because of the half working steering

system. We set out with a crazy idea of making this multi complex system robot and unfortunately

did not succeed. However, we were very proud with what we were able to do, even if it wasn’t

much.

3 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

2 Mechanical

Figure 1 Full CAD of the squid robot

Since we were making fully enclosed submarines, we had to have access points to the interior of

the robot so we could change batteries and access the pressure hull full of electronics. In order to

change batteries we created a small hatch on the bottom of the boat that could come off with two

screws. Inside of that hatch where two battery mounts which help secure the batteries very tightly.

In addition to power, the batteries provided some ballast at the bottom of the ship.

Figure 2 Battery hatch on the robot

4 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 3 Battery mounts in the robot

In order to access the electronics, the designed our squid so that the pressure hull could pull out of

the front of the boat. We made the hole in the front big enough to simply pull the pressure hull out.

Unfortunately, we didn’t plan our electronics set up accordingly. The Arduino we had to access

the most in order to change code and read output, was on the opposite end of the tube. To get to

that Arduino we had to open the squid at its halfway point in order to pull the entire pressure hull

out. Since we made the front hole big enough to pull the pressure hull out of, we had to secure it

in or else it would shoot out the front when we put the boat in the water. We ended up attaching a

metal bar that folded over each edge and screwed to the sides.

Figure 4 Hole for the pressure tube. Bar over to keep the tube in the squid.

Since squids move through propulsion we decided to also use jet propulsion in order to move our

boat. To do this we installed a water pump in the back of the boat. Originally this was going to

suck water out of the back of the boat, then push water out the same direction. After printing the

parts and thinking about this a little more, we realized that if we sucked water in from the back,

5 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

because of physics, we would most likely end up pulling the entire boat backwards. When we

realized this, we created a cap for the hole in the back. We left smaller side holes that water could

be sucked in from, but the problem of the big back hole had been solved.

Figure 5 Where all the tubes go for water to move in order to propel and turn

As mentioned earlier, we planned to have three steering systems on our boat. We were going to

have the pump send water into a bladder, in this case a rubber glove, and then split the bladder two

directions into valves. These valves were connected to steering tubes that came out of the back of

the boat. These tubes were designed to be connected by fishing line to a servo further up on either

side of the boat. The plan was to have the ability to open and close the valves, so if we turned left,

only the right valve would be open, forcing the boat to turn left, and if we were going straight we

would have both valves open. We put the bladder between the pump and tubes with the hope that

this would build up more pressure and help propel the boat forward. The tubes were to connect to

the servos so we could pull the tubes to help turn the boat. We called this direction tube drive. The

thought was that if we were turning left, for example, we could pull the right tube to the right and

it would help to push the squid in the proper direction. We decided that these were complex

steering systems so we wanted a backup system, just in case. For a back us system, we put two

fins at the front of the boat. These fins were mounts to servos so they could spin down and create

drag, helping to turn the boat. Again, if we wanted to turn left we could put the left fin down and

it would help create drag to turn us that direction.

6 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 6 Full boat with "working" systems

Unfortunately, not all of our plans panned out. Because a lot of electrical pin losses through

Arduino communication and things connected, like shields and cameras, we did not have enough

pins for all of the systems. We ended up knocking out the directional tube driving because we

didn’t have space to power the servos, or time to try to make it work. The valves were tricky.

Because of a lack of pins, we had one valve wired to the motor shield as a motor and the other

connected to a relay. We luckily had space for this system; however, the two valves never both

worked, which will be discussed later. The only system that truly worked was the fins. However,

though the servos could move to a proper angle, the fins would never stay connected to the servo

shaft, no matter how many times we tried to glue them on. Because of all of these failures we had

about 1 – 1.5 working steering system, including the half working valves and the broken, but

working fins.

7 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 7 Full electronics tube

Since these boats were to be fully submersible, we had to fully waterproof the electronics. The

electronics were put into a fully sealed pressure hull. The was a long clear tube with very tight end

caps that we waterproofed along the edges because of the o rings used to snug the cap into the

tube. However, since we had to power electronics outside of the tube, such as servos, and receiver

power from the batteries that were not in the hull, we had to make wires to connect outside the

hull. To do this, we screwed holes in the end cap to put bored-out bolts in to trail the wires through.

After making the holes in the end cap we had to work very hard to waterproof it. We tried sealant

and gasket sealant and a few other thigs but nothing worked. We began to give up hope. However,

we then created an epoxy lake in the cap that, luckily, worked amazingly. The other endcap was a

lot easier to seal. We had to drill a hole in the endcap and put an acrylic window in so that our

camera could see out of the boat. Happily for us, we used sealant around the edges of that and it

worked on the first try.

8 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 8 Endcap filled with epoxy

Since we were making such a cool aquatic creature, we wanted it to look really cool. We decided

early on that we would attach tentacles and they would light up. Later we also decided that we

wanted to create a steampunk squid. Painting was able to happen so the squid looked gold and

steam punky, additionally some decorative parts, like portholes, were put on. We were also able

to find tentacles and thread them with LEDS and put steam punk end caps on them. Our boat was

looking great! Unfortunately, since our boat didn’t work great, we never got a chance to water test

with the light up tentacles.

Figure 9 The full steampunk squid with tenticals!

9 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

3 Electrical

Figure 10 Full electronics system

The main components of the electrical system include: 2 Arduinos, a Pixy Cam, an X-Bee, the

motors/servos, and the sensors.

The Pixy Cam was the sensing system for this boat. A Pixy Cam can be trained on certain colours. Once it

is trained it is able to look at something of that colour and report back the colour, the size, which can tell

the distance it is away from it, and the angle it is away from it. This was extremely useful as we were

trying to sense buoys to drive to in order to traverse a triangle across the pool. Originally we had the

Pixy Cam hooked up to what we called the “Sense” Arduino. The information collected - the arrays of

colours, angles, and distances - were then sent to the “Think/Act” Arduino. After a lot of testing with a

lot of Serial communication problem (I will talk about this more in depth later) we realized it would

make more sense to hook the Pixy Cam directly to the Think/Act Arduino. This mean the information

was directly on that Arduino with no need to transfer data.

10 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 11 Data diagram

11 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

In order to get the power we needed, we hooked two batteries up in parallel so that even if one ran low,

the robot would continue to get the power it needed. Even still, the robot seemed to run a little low on

power, just because we had so much going on. When testing, we ran into a lot of problems with the

power not being hooked up properly so the Arduinos were not behaving in the expected manner.

However, by the end, we had all of the electronics, including power, wired up properly.

Figure 12 Power diagram

Communication was a big thing with this robot. We had to communicate between two Arduinos as well

as wirelessly between the Think/Act Arduino and the computer using an X-Bee. We had a lot of trouble

connecting the Arduinos through Serial (which will be talked about later) because of all of the pins that

the different motors, servos and the Pixy Cam took up. Also, some things, like servos, didn’t work with

some of the Serial connections we tried to use. We ended up not communicating between the Arduinos.

In the end we had the Pixy Cam connected to the Think/Act Arduino. We used the sense Arduino to

hook up our e-stop magnetic sensor, our water flood sensor, and our temperature sensor. The magnetic

sensor to determine e-stop was hooked to a relay that when triggered, would turn the power to the

motors off. The hope was that if the pressure hull was taking on too much water, or if the temperature

12 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

got too high, or the e-stop magnet was pulled, the boat could e-stop. However, since we couldn’t even

get our boat running, we never fully integrated the code for this into the robot.

Figure 13 Magnet holder for the estop

In order to communicate with the robot we had to connect an X-Bee to the computer and one to an

Arduino. The hope was that we could upload code and talk to the boat over X-Bee. Since we wanted to

be able to upload code, we decided to hook the X-Bee up to the Think/Act Arduino as that had more

variables- likely to change in the code. The X-Bee was hooked to the I/O shield, which has a spot made

for it. The X-Bee is a wireless communication device that is commonly used to communicate between

Arduinos and computers. The hope was that we would be able to upload code wirelessly; unfortunately,

we could not figure out how to make that work. Luckily, we were able communicate through the X-Bee

so we could have the Arduino send us messages and we could send messages back. This allowed us to

send missions to the Arduino and allowed us to see the data the Pixy Cam was sending so we could

debug and see if the robot actually saw the targets.

13 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 14 Full data and power diagram

14 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

4 Software
[See appendix for full code]

Since we had two Arduinos we had to have two scripts of Arduino code, one for Sensing and one from

Thinking and Acting. These Arduinos had to communicate through serial in order to transfer data from

one to the other. Software Serial can only transfer integers so we decided to use an Arduino library

called “Easy Transfer.” This library allows you to end almost any type of data between two Arduinos,

even arrays. This transfer is set up by creating a send Structure and a receive Structure. Inside of the

structures you create the variables you want to send between the Arduinos, making sure it is the same

in the send and the receive on the two Arduinos. In the code you can call the structure. Variable and set

it equal to something. When you are done assigning values you can then send the variable to the other

Arduino. On the other Arduino you can receive those values and use structure.variable in order to use

the variable.

1. [Some simple easy transfer code] struct SEND_DATA_STRUCTURE { //put your variable definitions
here for the data you want to receive //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO

2. int16_t test;
3. boolean mag;
4. };
5.
6. void loop() { // put your main code here, to run repeatedly:
7. for (int i = 0; i < 100; i++) {
8. txdata.test = i;
9. txdata.mag = digitalRead(A0);
10. ETout.sendData(); //Serial.println(txdata.test);
11. delay(1000);
12. }

Unfortunately, we were unable to use Software Serial on the Sense Arduino because the Pixy Cam

interfered with it. Instead, we sent data using Serial from the Sense Arduino, this was still able to work

with Easy Transfer. The only reason this was a pain is because we could no longer see the data we were

sending on the actual Serial Monitor. We then realized Software Serial also didn’t work on the Think/Act

Arduino. The Think/Act Arduino had servos plugged in as well as the X-Bee. Because of the X-Bee we

were not able to use the regular servo library, this had something to do with the timers in the Servo and

X-Bee library interfering in some way. Since the regular Servo library did not work we had to use a

library called ServoTimer2. This allowed the servos to move properly again! However, this new servo

library did not work with the Software Serial. Because of this we tried a new serial library, AltSoftSerial.

Unfortunately, this type of serial did not work with the Easy Transfer library. At this point, we decided it

was not worth trying to make the Arduinos communicate through Serial with all the things we had going

on. We realized we had two choices, either move the send information through analog pins (ie. Send

different voltage values to reference straight, right, left), try to use I2C transfer instead of Easy Transfer,

or not have the Arduinos connect and instead have the Sense Arduino be in control of the sensors,

including e-stop, and have the Pixy Cam connect to the Think/Act Arduino. We decided the easiest

process to switch to would be to move the Pixy Cam and disconnect the Arduinos. Luckily, the code

could remain almost the same, just located in a different place. The following is the code used to extract

data from the Pixy Cam, we were able to use the same code in both the Sense Arduino and when we

moved to the Think/Act Arduino.

15 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

1. void readSenseArduino() {
2. int n = pixy.getBlocks();
3. for (int i = 0; i < MAX_BLOCKS; i++) {
4. signatures[i] = 0;
5. }
6. for (int i = 0; i < min(n, MAX_BLOCKS); i++) {
7. widths[i] = pixy.blocks[i].width;
8. positions[i] = pixy.blocks[i].x;
9. signatures[i] = pixy.blocks[i].signature;
10. }
11. distance = -1;
12. angle = 0;
13. for (int i = 0; i < MAX_BLOCKS; i++) {
14. if (signatures[i] == mission[target] - 2) { // G,Y,R,H = 1,2,3,4
15. distance = CAMERA_RATIO * widths[i];
16. angle = positions[i] - 159; // 159 = center of screen

The Pixy Cam returns something called “blocks” which holds all of the data. In order to make this data

easier to process, we split the blocks up into 3 parts, colour, size, and angle. By putting this into arrays

we were able to easily manipulate and use them in the code. To see this break down, see the code

above. In order to have the Pixy Cam recognize a colour you press the white button on the top right,

seen in the picture below.

Figure 15 Pixy Cam with white calibration button on top right corner

16 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Since we were to have so many steering capabilities, we had some complex, but nicely designed, code to

determine what part needed to move and how much it needed to move. We had a Think function that

looked at which mission was chosen and determined which direction the boat should drive, straight,

right, or left. It also restarted the mission if we input the mission as a loop. This function set the variable

“direction” to straight, right, left, or none.

17. void think() {
18. if (mission[target] <= 2) { // Manual override
19. direction = mission[target];
20. } else if (mission[target] == DANCE) { // Dance code
21. direction = DANCE;
22. } else if (distance < 0) { // Target not visible
23. direction = LEFT;
24. } else if (distance > APPROACH_DIST) { // Reached target
25. target++;
26. if (mission[target] == LOOP) { // Restart mission
27. target = 0;
28. }
29. direction = NONE;
30. } else { // Target visible
31. direction = STRAIGHT;
32. }

 } The direction variable was used in the act loop. In the act loop we had a switch statement that

went through all the possibilities for the direction. In each case, the move function would be called. The

move function required 2 arguments: velocity and angle. The move function took these arguments and

determined what to do with each of the steering systems.

33. switch (Serial.read()) {
34. case '>':
35. return; // Debug message
36. case '2':
37. mission[i] = STRAIGHT;
38. break;
39. case '1':
40. mission[i] = LEFT;
41. break;
42. case '3':
43. mission[i] = RIGHT;
44. break;
45. case 'r':
46. mission[i] = RED;
47. break;
48. case 'y':
49. mission[i] = YELLOW;
50. break;
51. case 'g':
52. mission[i] = GREEN;
53. break;
54. case 'h':
55. mission[i] = HOME;
56. break;
57. case 'd':
58. mission[i] = DANCE;
59. break;
60. case 'l':
61. mission[i] = LOOP;

17 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

62. break;
63. default:
64. mission[i] = NONE;
65. }

Originally we decided whether to turn the pump on or off in the move function. However, for demo we

commented this out and just had the pump constantly on. We also had logic to determine how to turn

the tubes for the differential tube steering. This was obviously unused since we didn’t set this system

up. The fins had another logic statement set to determine how to move each of the fins. The fin code

worked great! Unfortunately, the fins kept falling off and they were not impactful enough with such

slow movement to turn the boat.

66. if (TURN_FINS && ang >= TURNING_ANGLE) { // Left //Serial.println("turn fins left");
67. leftFin.write(SERVO_MIN_POSITION + FIN_TURN_ANGLE - 200);
68. rightFin.write(SERVO_MAX_POSITION - FIN_FORWARD_ANGLE - 100);
69. } else if (TURN_FINS && ang <= -

TURNING_ANGLE) { // Right //Serial.println("turn fins right");
70. leftFin.write(SERVO_MIN_POSITION + FIN_FORWARD_ANGLE - 200);
71. rightFin.write(SERVO_MAX_POSITION - FIN_TURN_ANGLE - 100);
72. } else { // Straight //Serial.println("turn fins straight");
73. leftFin.write(SERVO_MIN_POSITION + FIN_FORWARD_ANGLE - 200);
74. rightFin.write(SERVO_MAX_POSITION - FIN_FORWARD_ANGLE - 100);
75. } // Set valve states
76. if (TURN_VALVES && ang >= TURNING_ANGLE) { // Left //Serial.println("turn VALVE left")

;

We also had logic statements to determine which valves should be on or off. Since one valve was wired

to the motor shield and the other to a relay, the control of the two pumps was different.

77. if (TURN_VALVES && ang >= TURNING_ANGLE) { // Left //Serial.println("turn VALVE left")
;

78. digitalWrite(VALVE1M, LOW);
79. analogWrite(VALVE1E, 0);
80. digitalWrite(VALVE2, HIGH);
81. } else if (TURN_VALVES && ang <= -

TURNING_ANGLE) { // Right //Serial.println("turn VALVE right");
82. digitalWrite(VALVE1M, HIGH);
83. analogWrite(VALVE1E, 255);
84. digitalWrite(VALVE2, LOW);
85. } else { // Straight //Serial.println("turn VALVE straight");
86. digitalWrite(VALVE1M, HIGH);
87. analogWrite(VALVE1E, 255);
88. digitalWrite(VALVE2, HIGH);
89. }

Unfortunately on demo day both of the valves wouldn’t work. One valve seemed to always be on and

the other would never turn on, causing us to be able to move in a very slow arc “across” the pool.

18 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

5 Demo Day
The night leading up to demo day and the morning of, you could find our team in the LPB working

feverishly to get our squid to work. The night before is when we discovered most of our Arduino

connection problems. Unfortunately, in the testing leading up to the night before, we did not uncover all

of these problems. Before that night, we discovered that the Pixy Cam couldn’t work with Software

Serial so we would have to work with Serial to communicate instead. Unfortunately, all of the other

Serial and Servo problems we find the night before.

Early on that night we decided to move away from Arduino communication. Unfortunately, the weeks

leading up to demo day we worked to get the Pixy Cam working properly, the X-Bee communicating, and

the Serial communication to work properly so we didn’t get to test much with the actual movement

systems. This cause the problems we had for demo.

That night, we realized that not only did our servos not work, something fixed as soon as we could look

up what the problem was. The night before we realized we had another problem, the pump did not

always turn on or off when it was supposed to. In order to fix this problem we turned the pump to

constantly on

90. digitalWrite(PUMPM, HIGH);
91. analogWrite(PUMPE, 255);

We then had many valve problems. Originally it appeared both of our valves worked, when tested with a

simple code to test the valves turning on and off. For some reason, once we put the actual code on the

Arduino the valves stopped working properly.

We tried many things to fix this. We tried to hook both valves up to the motor controller together so

they would just be open, so we could propel ourselves in a straight line forward. For some reason, this

did not work, only one valve would stay open. We tried the original orientation, with both set to open,

no luck. We tried to original orientation with the original code again, still no luck. When we plugged

them both into the motor controller the second time, the valve that hadn’t been working started to

work, but the other one remained closed. We are very unsure why this was happening. I would guess it

has something to do with power. It is possible the valve was broken, except they did work in the test

code. If we had more time I would try to figure out what was wrong with the valves.

19 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 16 A valve, attempted to be waterproofed, ended up not needing it.

It was very frustrating to be working the night before and the morning of and still be taking systems out

and moving things like the camera. It was frustrating to realize more pins than we expected were taken

up by the shields or other pieces (like servo, Pixy Cam, and X-Bee). It was very sad to not see the part

we were all most excited about, the direction steering, work and to see even the simplest systems, like

the valves and fins, not behave the way we expected them to, wither mechanically or electrically/code. I

was definitely sad that we never got to see our squid swim around with its light up tentacles. I think that

there were a lot of draw-backs this spiral, including mechanical parts coming slowly so it was hard to

test, but I also think we should have done more testing in the beginning, even without the mechanical

parts all there. It was a difficult process, trying to figure out the X-Bee and Arduino serial connection,

finally thinking you had it working, and then having it not actually work.

Over all, I was super excited to see the squid float in the pool. When we first tested, the squid was butt

heavy and the tube wanted to pop out the top, so it was great to see it actually balanced.

20 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

Figure 17 The pressure hull trying to burst out of the water

The morning of, we were able to miraculously get the squid to move. The valves decided to both stay

open, the pump worked and the fins were working. The propulsion was not strong enough to really

direct the squid so it kind of just drifted around, but none the less it was exciting to see it working. It was

also very exciting to see the information sent from the X-Bee to the computer because it meant we got

wireless communication working. One of the coolest things, was seeing the data from the Pixy Cam

behave exactly how we wanted, and seeing the robot try to turn the fins the correct direction according

to the information from the Pixy Cam. I honestly believe that if we had had just a little more time we

could have figured everything out. It felt like we had all the pieces there, they just weren’t all working

quite perfectly together. Overall, I am very happy with how our squid turned out, I just wish we could

have had a little more time to actually make it work.

21 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

6 Appendix
Think Act Code

92. /** * Sprint 2 Code * Think/Act * SquidBot * Mission: Drive straight to buoy, turn in circle,
drive to next buoy, etc., * then back home * Team Squid: Aubrey, Diego, Gretchen, Jo
n, MJ, Paul * 12/9/2017 * Version 1 */ // Library for Serial Transfer //#include <EasyTransf
er.h> //#include <SoftwareSerial.h> //#include <AltSoftSerial.h> // Libraries included to use
PixyCam

93. #
94. include < SPI.h > #include < Pixy.h > // Library included to use servos //#include<Servo.h>
95. #include < ServoTimer2.h > // Libraries included to use motor and motion shield
96. #include < Wire.h > Pixy pixy; //creates PixyCam object to use // CONSTANTS AND GLOBAL VAR

IABLES VVV
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV // Constants

97. enum {
98. RIGHT = -1, NONE = 0, LEFT = 1, STRAIGHT = 2
99. }; // Directions
100. enum {
101. GREEN = 3, YELLOW = 4, RED = 5, HOME = 6, DANCE = 7, LOOP = 8
102. }; // Targets
103. const int APPROACH_DIST = 100; // Distance from target to start turning (inches)
104. const float K_P = 1.0; // Proportional constant for feedback control
105. const int FORWARD_VELOCITY = 255; // Pump output for normal swimming
106. const int TURNING_VELOCITY = 255; // Pump output for turning
107. const int MAX_MISSION_LENGTH = 10; // Maximum number of targets in a mission
108. const int CAMERA_RATIO = 1; // Distance from buoy divided by pixel width of buoy (inche

s/pixel)
109. const int SERVO_MIN_POSITION = 1000; //0; // Minimum angle that servos can output
110. const int SERVO_MAX_POSITION = 2000; //170; // Maximum angle that servos can output
111. const int FIN_FORWARD_ANGLE = 500; //85; // Left fin servo value for going forward (rig

ht is reversed)
112. const int FIN_TURN_ANGLE = 100; //120; // Left fin servo value for turning (right is re

versed)
113. const int TUBE_ZERO_ANGLE = 1500; // Left tube servo default position for going forward

 (right is reversed)
114. const int TURNING_ANGLE = 2000; //170; // Angle output for initiating a turn, cutoff fo

r applying valves and fins
115. const int MAX_BLOCKS = 7; // Maximum number of blocks sent from pixycam
116. const bool TURN_TUBES = true; // Whether to use tube servos for steering
117. const bool TURN_VALVES = true; // Whether to use valves for steering
118. const bool TURN_FINS = true; // Whether to use fins for steering // Pins
119. const int FIN1 = 10; // Right fin
120. const int FIN2 = 3; // Left fin
121. const int TUBE1 = 9; // Right tube pull
122. const int TUBE2 = 5; // Left tube pull
123. const int VALVE2 = 2; // Left valve through relay
124. const int PUMPE = 4; // Pump PLL speed control pin
125. const int PUMPM = 5; // Pump motor plug
126. const int VALVE1E = 7; // Valve PLL speed control pin
127. const int VALVE1M = 6; // Valve motor plug // Objects
128. ServoTimer2 rightFin, leftFin, leftTube, rightTube; //AltSoftSerial Arduino(12,13); //c

ommunicate with sense Arduino RX TX //EasyTransfer ETin, ETout; // State variables
129. int direction = NONE; // Computed direction to travel
130. int mission[MAX_MISSION_LENGTH]; // Ordered array of targets, e.g. {RED, YELLOW, WHITE,

 HOME, NONE}
131. int target = 0; // Current target index
132. int distance = 0; // Distance from target in inches
133. int angle = 0; // Angle towards target in degrees CCW
134. long previousMillis = 0; // Previous loop time in milliseconds

22 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

135. boolean flood, temp = false; // E-
Stop activated, hull flooding, electronics overheating

136. int loops = 0;
137. float widths[MAX_BLOCKS];
138. int16_t signatures[MAX_BLOCKS];
139. float positions[MAX_BLOCKS];
140. boolean estop = false; // //// Serial send/recieve structures //struct RECEIVE_DATA_STR

UCTURE{ // //put your variable definitions here for the data you want to receive // //THIS M
UST BE EXACTLY THE SAME ON THE OTHER ARDUINO // float widths[MAX_BLOCKS]; // int16_t signatu
res[MAX_BLOCKS]; // float positions[MAX_BLOCKS]; // boolean estop; //}; // // //// Give a na
me to the group of data //RECEIVE_DATA_STRUCTURE rxdata; // SETUP ROBOT CODE (RUN ONCE) SSSSSS
SS
SSSSSSSSSSSSSSSSSSSSSSSSSS

141. void setup() { // Serial transfer initialization
142. Serial.begin(9600);
143. pixy.init(); //Arduino.begin(4800); //ETin.begin(details(rxdata), &Arduino); //

Serial.println("In setup"); // Pin initialization
144. rightTube.attach(TUBE1);
145. leftTube.attach(TUBE2);
146. leftFin.attach(FIN2);
147. rightFin.attach(FIN1);
148. pinMode(PUMPM, OUTPUT);
149. pinMode(VALVE1M, OUTPUT); // Right
150. pinMode(VALVE2, OUTPUT); // Left
151. Serial.println("About to system check");
152. systemCheck();
153. Serial.println("System check done");
154. } // ROBOT CONTROL LOOP (RUNS UNTIL STOP) LLL

LL
155. void loop() {
156. delay(20);
157. loops++; // if(0&&ETin.receiveData()){ // Serial.print("Magnet: "); // S

erial.println(rxdata.estop); // Serial.print("Sig: "); // Serial.println(rxdata.signatur
es[0]); // Serial.println(rxdata.signatures[1]); // Serial.println(rxdata.signatures[2])
; // Serial.println(rxdata.signatures[3]); // Serial.println(rxdata.signatures[4]); //
 Serial.println(rxdata.signatures[5]); // Serial.println(rxdata.signatures[6]); // Seri
al.print("Pos: "); // Serial.println(rxdata.positions[0]); // Serial.print("Width: "); /
/ Serial.println(rxdata.widths[0]); // }

158. digitalWrite(PUMPM, HIGH);
159. analogWrite(PUMPE, 255);
160. downloadMission();
161. readSenseArduino();
162. think();
163. act();
164. if (loops % 10 == 0) debug();
165. } // CONTROL FUNCTIONS CC

CC // Delay loop
166. void wait(int t) {
167. previousMillis = millis();
168. while (millis() - previousMillis <= t) {}
169. } // Check for new mission over Serial in the format of a string of characters
170. void downloadMission() {
171. int n = Serial.available();
172. if (n < 1) { // No message available
173. return;
174. }
175. for (int i = 0; i < n; i++) { // Map input characters to desired targets
176. switch (Serial.read()) {
177. case '>':
178. return; // Debug message
179. case '2':

23 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

180. mission[i] = STRAIGHT;
181. break;
182. case '1':
183. mission[i] = LEFT;
184. break;
185. case '3':
186. mission[i] = RIGHT;
187. break;
188. case 'r':
189. mission[i] = RED;
190. break;
191. case 'y':
192. mission[i] = YELLOW;
193. break;
194. case 'g':
195. mission[i] = GREEN;
196. break;
197. case 'h':
198. mission[i] = HOME;
199. break;
200. case 'd':
201. mission[i] = DANCE;
202. break;
203. case 'l':
204. mission[i] = LOOP;
205. break;
206. default:
207. mission[i] = NONE;
208. }
209. }
210. for (int i = n; i < MAX_MISSION_LENGTH; i++) {
211. mission[i] = NONE;
212. }
213. target = 0;
214. } // Compute distance and direction from sense Arduino input
215. void readSenseArduino() {
216. int n = pixy.getBlocks();
217. for (int i = 0; i < MAX_BLOCKS; i++) {
218. signatures[i] = 0;
219. }
220. for (int i = 0; i < min(n, MAX_BLOCKS); i++) {
221. widths[i] = pixy.blocks[i].width;
222. positions[i] = pixy.blocks[i].x;
223. signatures[i] = pixy.blocks[i].signature;
224. }
225. distance = -1;
226. angle = 0;
227. for (int i = 0; i < MAX_BLOCKS; i++) {
228. if (signatures[i] == mission[target] - 2) { // G,Y,R,H = 1,2,3,4
229. distance = CAMERA_RATIO * widths[i];
230. angle = positions[i] - 159; // 159 = center of screen
231. }
232. } // if(ETin.receiveData()){ //recieves data: n, blocks // delay(20); //

 distance = -1; // angle = 0; // if(rxdata.estop){ // eStop(); // } // //}
233. } //Check all systems
234. void systemCheck() {
235. wait(1000);
236. move(0, TURNING_ANGLE);
237. wait(1000);
238. move(0, -TURNING_ANGLE);
239. wait(1000);

24 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

240. move(0, 0);
241. } //eStop function to shut off all motors
242. void eStop() { // rightFin.write(0); // leftFin.write(0); // leftTube.write(0); //

rightTube.write(0);
243. digitalWrite(VALVE2, LOW);
244. digitalWrite(PUMPM, LOW);
245. analogWrite(PUMPE, 0);
246. digitalWrite(VALVE1M, LOW);
247. analogWrite(VALVE1E, 0);
248. } // Output current state over Xbee
249. void debug() {
250. Serial.print(">>> Mission: ");
251. for (int i = 0; i < MAX_MISSION_LENGTH; i++) {
252. Serial.print(mission[i]);
253. }
254. Serial.print(", Blocks: ");
255. Serial.print(signatures[0]);
256. Serial.print(signatures[1]);
257. Serial.print(signatures[2]);
258. Serial.print(signatures[3]);
259. Serial.print(signatures[4]);
260. Serial.print(signatures[5]);
261. Serial.print(signatures[6]);
262. Serial.print(", Target: ");
263. Serial.print(target);
264. Serial.print(", Direction: ");
265. Serial.print(direction);
266. Serial.print(", Distance: ");
267. Serial.print(distance);
268. Serial.print(", Angle: ");
269. Serial.print(angle);
270. Serial.print(", Flood: ");
271. Serial.print(flood);
272. Serial.print(", Temp: ");
273. Serial.print(temp);
274. Serial.print(", E-Stop: ");
275. Serial.println(estop);
276. } // THINK TT

TT
277. void think() {
278. if (mission[target] <= 2) { // Manual override
279. direction = mission[target];
280. } else if (mission[target] == DANCE) { // Dance code
281. direction = DANCE;
282. } else if (distance < 0) { // Target not visible
283. direction = LEFT;
284. } else if (distance > APPROACH_DIST) { // Reached target
285. target++;
286. if (mission[target] == LOOP) { // Restart mission
287. target = 0;
288. }
289. direction = NONE;
290. } else { // Target visible
291. direction = STRAIGHT;
292. }
293. }
294. // ACT AAA

AAA
295. void act() {
296. if (estop) {
297. move(0, 0);

25 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

298. return;
299. }
300. switch (direction) {
301. case STRAIGHT: // Swim straight using proportional feedback control
302. move(FORWARD_VELOCITY, int(K_P * angle));
303. break;
304. case LEFT: // Turn left
305. move(TURNING_VELOCITY, TURNING_ANGLE);
306. break;
307. case RIGHT: // Turn right
308. move(TURNING_VELOCITY, -TURNING_ANGLE);
309. break;
310. case DANCE: // Show off your moves
311. break;
312. default: // Stop
313. move(0, 0);
314. break;
315. }
316. } // Output motor values
317. void move(int vel, int ang) { // Set pump output // if(vel>0) { // //Serial.print("

vel when pump on: "); // //Serial.println(vel); // digitalWrite(PUMPM, HIGH); // anal
ogWrite(PUMPE, vel); // } else { // //Serial.print("vel when pump off: "); // //Serial.
println(vel); // digitalWrite(PUMPM, LOW); // analogWrite(PUMPE, 0); // }

318. digitalWrite(PUMPM, HIGH);
319. analogWrite(PUMPE, 255); // Set tube angles
320. if (TURN_TUBES) {
321. int leftTubeAngle = min(max(TUBE_ZERO_ANGLE + ang, TUBE_ZERO_ANGLE), TUBE_Z

ERO_ANGLE + TURNING_ANGLE);
322. int rightTubeAngle = min(max(TUBE_ZERO_ANGLE - ang, TUBE_ZERO_ANGLE), TUBE_

ZERO_ANGLE + TURNING_ANGLE);
323. leftTube.write(SERVO_MIN_POSITION + leftTubeAngle);
324. rightTube.write(SERVO_MAX_POSITION - rightTubeAngle);
325. } else {
326. leftTube.write(SERVO_MIN_POSITION + TUBE_ZERO_ANGLE);
327. rightTube.write(SERVO_MAX_POSITION - TUBE_ZERO_ANGLE);
328. } // Set fin angles
329. if (TURN_FINS && ang >= TURNING_ANGLE) { // Left //Serial.println("turn fins le

ft");
330. leftFin.write(SERVO_MIN_POSITION + FIN_TURN_ANGLE - 200);
331. rightFin.write(SERVO_MAX_POSITION - FIN_FORWARD_ANGLE - 100);
332. } else if (TURN_FINS && ang <= -

TURNING_ANGLE) { // Right //Serial.println("turn fins right");
333. leftFin.write(SERVO_MIN_POSITION + FIN_FORWARD_ANGLE - 200);
334. rightFin.write(SERVO_MAX_POSITION - FIN_TURN_ANGLE - 100);
335. } else { // Straight //Serial.println("turn fins straight");
336. leftFin.write(SERVO_MIN_POSITION + FIN_FORWARD_ANGLE - 200);
337. rightFin.write(SERVO_MAX_POSITION - FIN_FORWARD_ANGLE - 100);
338. } // Set valve states
339. if (TURN_VALVES && ang >= TURNING_ANGLE) { // Left //Serial.println("turn VALVE

 left");
340. digitalWrite(VALVE1M, LOW);
341. analogWrite(VALVE1E, 0);
342. digitalWrite(VALVE2, HIGH);
343. } else if (TURN_VALVES && ang <= -

TURNING_ANGLE) { // Right //Serial.println("turn VALVE right");
344. digitalWrite(VALVE1M, HIGH);
345. analogWrite(VALVE1E, 255);
346. digitalWrite(VALVE2, LOW);
347. } else { // Straight //Serial.println("turn VALVE straight");
348. digitalWrite(VALVE1M, HIGH);
349. analogWrite(VALVE1E, 255);

26 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

350. digitalWrite(VALVE2, HIGH);
351. }

Sense Code

1. /** * Sprint 2 Code * Sense * SquidBot * Mission: Drive straight to buoy, turn in circle, driv
e to next buoy, etc., * then back home * Team Squid: Aubrey, Diego, Gretchen, Jon, MJ
, Paul * 10/25/2017 * Version 1 */ //library for serial communication //#include <EasyTransf
er.h> //#include <SoftwareSerial.h> //need this library to run Software Serial //libraries inc
luded to use PixyCam

2. #
3. include < SPI.h > #include < Wire.h > //#include <PixyI2C.h>
4. #include < Pixy.h > //#include "PixyUART.h" //library included to use servos
5. #include < Servo.h > //libraries included to use motor and motion shield //#include "NineA

xesMotion.h" //Constants and Global Variables VVV
VV

6. Pixy pixy; //creates PixyCam object to use //EasyTransfer ETin, ETout; //creates serial st
ructures to transfer data //flood True if hull flooding //temp true if electronics overheating

7. boolean flood, temp, estop = false;
8. const int COLUMNS = 16;
9. const int ROWS = 1;
10. const int FLOODPIN = A3;
11. const int MAX_BLOCKS = 7;
12. const int STOP = A0; // Magnetic sensor pin to determine eStop
13. const int TEMP = A2;
14. const int RELAY = 5;
15. int filter = 0; //struct SEND_DATA_STRUCTURE{ // //put your variable definitions here for the

 data you want to receive // //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO // float w
idths[MAX_BLOCKS]; // int16_t signatures[MAX_BLOCKS]; // float positions[MAX_BLOCKS]; // bo
olean estop; //}; // ////give a name to the group of data //SEND_DATA_STRUCTURE txdata; //SETU
P ROBOT CODE (RUN ONCE)SSS
SS

16. void setup() {
17. Serial.begin(9600);
18. pixy.init(); //Arduino.begin(4800); //ETout.begin(details(txdata), &Serial); //Serial.

println("SETUP");
19. pinMode(STOP, INPUT);
20. pinMode(FLOODPIN, INPUT);
21. pinMode(RELAY, OUTPUT);
22. delay(100);
23. } //ROBOT CONTROL LOOP (RUNS UNTIL STOP)LL

LL
24. void loop() { //ETout.sendData(); // Serial.print(txdata.signatures[0]); // Serial.print(txd

ata.signatures[1]); // Serial.print(txdata.signatures[2]); // Serial.print(txdata.signatures
[3]); // Serial.print(txdata.signatures[4]); // Serial.print(txdata.signatures[5]); // Seri
al.println(txdata.signatures[6]);

25. delay(20); //checkFlood(); //checkTemp();
26. } //CONTROL FUNCTIONS CC

CC
27. void checkFlood() {
28. int liquidLevel = digitalRead(FLOODPIN);
29. if (liquidLevel == HIGH) {
30. flood = true; //Serial.println("FLOOD");
31. } //else //Serial.println("Water Good");
32. }
33. void checkTemp() { //temp 150F
34. int val = analogRead(TEMP); //Connect LM35 on Analog 0
35. float dat = (double) val * (5 / 10.24);
36. if (dat >= 65.5) {

27 | F u n d a m e n t a l s o f R o b o t i c s F a l l 2 0 1 7

37. temp = true; //Serial.println("FIRE");
38. } //else //Serial.println("Temp Good");
39. }
40. void eStop() {
41. estop = digitalRead(STOP);
42. if (eStop) {
43. digitalWrite(RELAY, HIGH);
44. }
45. }

